91 research outputs found

    LRRK2 in Transcription and Translation Regulation: Relevance for Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) is the most common neurodegenerative movement disorder and is characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of both familial and sporadic PD. One critical question is how PD-associated LRRK2 mutations cause neurodegeneration. Here, we discuss recent findings related to LRRK2-mediated regulation of gene expression and translation and provide a critical assessment of the current models that are used to address the impact of LRRK2 on the transcriptome. A better understanding of these mechanisms could provide important new clues into the function of LRRK2 during both normal and pathological conditions

    Putative Role of MicroRNA-Regulated Pathways in Comorbid Neurological and Cardiovascular Disorders

    Get PDF
    Background. The conserved noncoding microRNAs (miRNAs) that function to regulate gene expression are essential for the development and function of the brain and heart. Changes in miRNA expression profiles are associated with an increased risk for developing neurodegenerative disorders as well as heart failure. Here, the hypothesis of how miRNA-regulated pathways could contribute to comorbid neurological and cardiovascular disorders will be discussed. Presentation. Changes in miRNA expression occurring in the brain and heart could have an impact on coexisting neurological and cardiovascular characteristics by (1) modulating organ function, (2) accentuating cellular stress, and (3) impinging on neuronal and/or heart cell survival. Testing. Evaluation of miRNA expression profiles in the brain and heart tissues from individuals with comorbid neurodegenerative and cardiovascular disorders will be of great importance and relevance. Implications. Careful experimental design will shed light to the deeper understanding of the molecular mechanisms tying up those different but yet somehow connected diseases

    MicroRNAs and Alzheimer's Disease Mouse Models: Current Insights and Future Research Avenues

    Get PDF
    Evidence from clinical trials as well as from studies performed in animal models suggest that both amyloid and tau pathologies function in concert with other factors to cause the severe neurodegeneration and dementia in Alzheimer's disease (AD) patients. Accumulating data in the literature suggest that microRNAs (miRNAs) could be such factors. These conserved, small nonprotein-coding RNAs are essential for neuronal function and survival and have been implicated in the regulation of key genes involved in genetic and sporadic AD. The study of miRNA changes in AD mouse models provides an appealing approach to address the cause-consequence relationship between miRNA dysfunction and AD pathology in humans. Mouse models also provide attractive tools to validate miRNA targets in vivo and provide unique platforms to study the role of specific miRNA-dependent gene pathways in disease. Finally, mouse models may be exploited for miRNA diagnostics in the fight against AD

    MicroRNAs and the Regulation of Tau Metabolism

    Get PDF
    Abnormal regulation of tau phosphorylation and/or alternative splicing is associated with the development of a large (>20) group of neurodegenerative disorders collectively known as tauopathies, the most common being Alzheimer's disease. Despite intensive research, little is known about the molecular mechanisms that participate in the transcriptional and posttranscriptional regulation of endogenous tau, especially in neurons. Recently, we showed that mice lacking Dicer in the forebrain displayed progressive neurodegeneration accompanied by disease-like changes in tau phosphorylation and splicing. Dicer is a key enzyme in the biogenesis of microRNAs (miRNAs), small noncoding RNAs that function as part of the RNA-induced silencing complex (RISC) to repress gene expression at the posttranscriptional level. We identified miR-16 and miR-132 as putative endogenous modulators of neuronal tau phosphorylation and tau exon 10 splicing, respectively. Interestingly, these miRNAs have been implicated in cell survival and function, whereas changes in miR-16/132 levels correlate with tau pathology in human neurodegenerative disorders. Thus, understanding how miRNA networks influence tau metabolism and possibly other biological systems might provide important clues into the molecular causes of tauopathies, particularly the more common but less understood sporadic forms

    Circulating MicroRNAs in Alzheimer\u27s Disease: The Search for Novel Biomarkers

    Get PDF
    Alzheimer\u27s disease (AD) is the most common neurodegenerative disease in the elderly. While advancements have been made in understanding the genetic and molecular basis of AD, the clinical diagnosis of AD remains difficult, and post-mortem confirmation is often required. Furthermore, the onset of neurodegeneration precedes clinical symptoms by approximately a decade. Consequently, there is a crucial need for an early and accurate diagnosis of AD, which can potentially lead to strategies that can slow down or stop the progression of neurodegeneration and dementia. Recent advances in the non-coding RNA field have shown that microRNAs (miRNAs) can function as powerful biomarkers in human diseases. Studies are emerging suggesting that circulating miRNAs in the cerebrospinal fluid and blood serum have characteristic changes in AD patients. Whether miRNAs can be used in AD diagnosis, alone or in combination with other AD biomarkers (e.g., amyloid and tau), warrants further investigation

    Circulating MicroRNAs in Alzheimer\u27s Disease: The Search for Novel Biomarkers

    Get PDF
    Alzheimer\u27s disease (AD) is the most common neurodegenerative disease in the elderly. While advancements have been made in understanding the genetic and molecular basis of AD, the clinical diagnosis of AD remains difficult, and post-mortem confirmation is often required. Furthermore, the onset of neurodegeneration precedes clinical symptoms by approximately a decade. Consequently, there is a crucial need for an early and accurate diagnosis of AD, which can potentially lead to strategies that can slow down or stop the progression of neurodegeneration and dementia. Recent advances in the non-coding RNA field have shown that microRNAs (miRNAs) can function as powerful biomarkers in human diseases. Studies are emerging suggesting that circulating miRNAs in the cerebrospinal fluid and blood serum have characteristic changes in AD patients. Whether miRNAs can be used in AD diagnosis, alone or in combination with other AD biomarkers (e.g., amyloid and tau), warrants further investigation

    A Study of Small RNAs from Cerebral Neocortex of Pathology-Verified Alzheimer\u27s Disease, Dementia with Lewy Bodies, Hippocampal Sclerosis, Frontotemporal Lobar Dementia, and Non-Demented Human Controls

    Get PDF
    MicroRNAs (miRNAs) are small (20-22 nucleotides) regulatory non-coding RNAs that strongly influence gene expression. Most prior studies addressing the role of miRNAs in neurodegenerative diseases (NDs) have focused on individual diseases such as Alzheimer\u27s disease (AD), making disease-to-disease comparisons impossible. Using RNA deep sequencing, we sought to analyze in detail the small RNAs (including miRNAs) in the temporal neocortex gray matter from non-demented controls (n = 2), AD (n = 5), dementia with Lewy bodies (n = 4), hippocampal sclerosis of aging (n = 4), and frontotemporal lobar dementia (FTLD) (n = 5) cases, together accounting for the most prevalent ND subtypes. All cases had short postmortem intervals, relatively high-quality RNA, and state-of-the-art neuropathological diagnoses. The resulting data (over 113 million reads in total, averaging 5.6 million reads per sample) and secondary expression analyses constitute an unprecedented look into the human cerebral cortical miRNome at a nucleotide resolution. While we find no apparent changes in isomiR or miRNA editing patterns in correlation with ND pathology, our results validate and extend previous miRNA profiling studies with regard to quantitative changes in NDs. In agreement with this idea, we provide independent cohort validation for changes in miR-132 expression levels in AD (n = 8) and FTLD (n = 14) cases when compared to controls (n = 8). The identification of common and ND-specific putative novel brain miRNAs and/or short-hairpin molecules is also presented. The challenge now is to better understand the impact of these and other alterations on neuronal gene expression networks and neuropathologies

    The miR-15/107 Group of MicroRNA Genes: Evolutionary Biology, Cellular Functions, and Roles in Human Diseases

    Get PDF
    The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer\u27s disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played by these miRNAs in human diseases. Membership in this group is defined based on sequence similarity near the mature miRNAs\u27 5\u27 end: all include the sequence AGCAGC. Phylogeny of this group of miRNAs is incomplete; thus, a definitive taxonomic classification (e.g., designation as a superfamily ) is currently not possible. While all vertebrates studied to date express miR-15a, miR-15b, miR-16, miR-103, and miR-107, mammals alone are known to express miR-195, miR-424, miR-497, miR-503, and miR-646. Multiple different miRNAs in the miR-15/107 group are expressed at moderate to high levels in human tissues. We present data on the expression of all known miR-15/107 group members in human cerebral cortical gray matter and white matter using new miRNA profiling microarrays. There is extensive overlap in the mRNAs targeted by miR-15/107 group members. We show new data from cultured H4 cancer cells that demonstrate similarities in mRNAs targeted by miR-16 and miR-103 and also support the importance of the mature miRNAs\u27 5\u27 seed region in mRNA target recognition. In conclusion, the miR-15/107 group of miRNA genes is a fascinating topic of study for evolutionary biologists, miRNA biochemists, and clinically oriented translational researchers alike

    Specificity of Anti-Tau Antibodies when Analyzing Mice Models of Alzheimer's Disease: Problems and Solutions

    Get PDF
    Aggregates of hyperphosphorylated tau protein are found in a group of diseases called tauopathies, which includes Alzheimer's disease. The causes and consequences of tau hyperphosphorylation are routinely investigated in laboratory animals. Mice are the models of choice as they are easily amenable to transgenic technology; consequently, their tau phosphorylation levels are frequently monitored by Western blotting using a panel of monoclonal/polyclonal anti-tau antibodies. Given that mouse secondary antibodies can recognize endogenous mouse immunoglobulins (Igs) and the possible lack of specificity with some polyclonal antibodies, non-specific signals are commonly observed. Here, we characterized the profiles of commonly used anti-tau antibodies in four different mouse models: non-transgenic mice, tau knock-out (TKO) mice, 3xTg-AD mice, and hypothermic mice, the latter a positive control for tau hyperphosphorylation. We identified 3 tau monoclonal antibody categories: type 1, characterized by high non-specificity (AT8, AT180, MC1, MC6, TG-3), type 2, demonstrating low non-specificity (AT270, CP13, CP27, Tau12, TG5), and type 3, with no non-specific signal (DA9, PHF-1, Tau1, Tau46). For polyclonal anti-tau antibodies, some displayed non-specificity (pS262, pS409) while others did not (pS199, pT205, pS396, pS404, pS422, A0024). With monoclonal antibodies, most of the interfering signal was due to endogenous Igs and could be eliminated by different techniques: i) using secondary antibodies designed to bind only non-denatured Igs, ii) preparation of a heat-stable fraction, iii) clearing Igs from the homogenates, and iv) using secondary antibodies that only bind the light chain of Igs. All of these techniques removed the non-specific signal; however, the first and the last methods were easier and more reliable. Overall, our study demonstrates a high risk of artefactual signal when performing Western blotting with routinely used anti-tau antibodies, and proposes several solutions to avoid non-specific results. We strongly recommend the use of negative (i.e., TKO) and positive (i.e., hypothermic) controls in all experiments

    Huntingtin Aggregation Impairs Autophagy, Leading to Argonaute-2 Accumulation and Global MicroRNA Dysregulation

    Get PDF
    Many neurodegenerative diseases are characterized by the presence of intracellular protein aggregates, resulting in alterations in autophagy. However, the consequences of impaired autophagy for neuronal function remain poorly understood. In this study, we used cell culture and mouse models of huntingtin protein aggregation as well as post-mortem material from patients with Huntington’s disease to demonstrate that Argonaute-2 (AGO2) accumulates in the presence of neuronal protein aggregates and that this is due to impaired autophagy. Accumulation of AGO2, a key factor of the RNA-induced silencing complex that executes microRNA functions, results in global alterations of microRNA levels and activity. Together, these results demonstrate that impaired autophagy found in neurodegenerative diseases not only influences protein aggregation but also directly contributes to global alterations of intracellular post-transcriptional networks
    corecore